Oregon-Washington Water Year 2023 Climatological Recap

Larry O'Neill CEOAS Oregon State University Director, Oregon Climate Service State Climatologist of Oregon

Wallowa Mtns July 2023

State-issued drought declarations issued during WY2023

Washington: Statewide drought advisory with 8 watersheds with drought declarations

Oregon: 12 out of Oregon's 36 counties had a governor-issued drought declaration

U.S. Drought Monitor Pacific Northwest DEWS

October 3, 2023 (Released Thursday, Oct. 5, 2023) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

At the end of WY2023, 49.5% of the Pacific Northwest was in some stage of drought, a decrease of 15.7% from the start of the water year!

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	34.73	65.27	49.48	27.83	5.59	0.00
Last Week 09-26-2023	34.73	65.27	50.11	28.69	7.48	0.00
3 Month s Ago 07-04-2023	35.55	64.45	37.90	4.95	0.00	0.00
Start of Calend ar Year 01-03-2023	14.80	85.20	48.85	24.03	9.29	0.50
Start of Water Year 09-26-2023	34.73	65.27	50.11	28.69	7.48	0.00
One Year Ago 10-04-2022	0. 16	99.84	65.23	25.39	11.86	0.50

Intensity:

D1 Moderate Drought

D3 Extreme Drought

D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author:

Brad Pugh CPC/NOAA

droughtmonitor.unl.edu

U.S. Drought Monitor Pacific Northwest DEWS

October 3, 2023 (Released Thursday, Oct. 5, 2023) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	34.73	65.27	49.48	27.83	5.59	0.00
Last Week 09-26-2023	34.73	65.27	50.11	28.69	7.48	0.00
3 Month s Ago 07-04-2023	35.55	64.45	37.90	4.95	0.00	0.00
Start of Calend ar Year 01-03-2023	14.80	85.20	48.85	24.03	9.29	0.50
Start of Water Year 09-26-2023	34.73	65.27	50.11	28.69	7.48	0.00
One Year Ago 10-04-2022	0. 16	99.84	65.23	25.39	11.86	0.50

Intensity:

None D0 Abnormally Dry

D3 Extreme Drought

D1 Moderate Drought

D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author:

Brad Pugh CPC/NOAA

droughtmonitor.unl.edu

Drought Advisories and Declarations

Oregon Percent Area in U.S. Drought Monitor Categories

- Large parts of Oregon are still in a multi-year drought which began in 2020
- Washington mostly recovered from multi-year drought this year, although drought re-emerged during late spring

WY2023 Precipitation Anomaly (percentage)

Acc. Precipitation Anomaly (%) Water Year (Oct-Sep) 2023 - 1979-2000

ECMWF ERA5 (0.5x0.5 deg)

Somewhat atypical weak La Nina year, with historically wet California and Nevada and historical dryness in northern Mexico

WY2023 Precipitation Anomaly (percentage)

This La Niña event was drier in much of the PacNW than is typically observed during other La Niña events

Western Washington and the north Oregon Cascades received near normal precipitation and above average snowpack

Water Year 2023 Precipitation Ranking

Other than Oregon and Washington, most of the US west had a relatively wet water year <u>Oregon:</u> 40th driest out of 128 years (-2.61" anomaly, 92% of normal) <u>Washington:</u> 20th driest out of 128 years (-5.50" anomaly, 87%)

WY 2023 Seasonal Precipitation Rankings

- Washington had a drier than normal winter and water year
- Oregon started with a moderately dry fall and winter
- Much wetter than normal summer in eastern Oregon

January-August 2023 Precipitation Rankings

Seattle precipitation during calendar year 2023

Seattle experienced its 4th driest Jan-Aug on record (since 1945)

Click to Plot/Remove	e Years of Interest	Interest (number of missing days in parentheses)						Resort table by year
1985: 11.37	1952: 16.04	1966: 18.38	2018: 19.41	1956: 20.51	1957: 21.56	1951: 23.04	1983: 24.59	1961: 28.25
1979: 13.02	1947: 16.82	2001: 18.45	2009: 19.44	1993: 20.55	1982: 21.59	2016: 23.72	1954: 24.81	2017: 28.42
1973: 13.60	1988: 17.08	2000: 18.76	1978: 19.45	1986: 20.59	1958: 21.95	1959: 23.86	1999: 25.02	1953: 28.56
2023: 14.36	2008: 17.16	1969: 19.08	1992: 19.52	1967: 20.70	1945: 22.09	1975: 24.00	1991: 25.10	1968: 29.49
1962: 14.76	2019: 17.22	1998: 19.26 (2)	2015: 19.61	2002: 20.78	1960: 22.09	2020: 24.01	2022: 25.13	2014: 29.84
1949: 15.10	1963: 17.59	2005: 19.30	2007: 19.68	1976: 20.79	1946: 22.34	1971: 24.07	2012: 26.39	1950: 30.51
1994: 15.68	2004: 17.97	1970: 19.35	1955: 20.03	1984: 20.80	2006: 22.51	1974: 24.16	1948: 27.42	1972: 31.18
1981: 15.83	1965: 18.23	1987: 19.39	2021: 20.21	1995: 20.99	2010: 22.82	2011: 24.25	1997: 27.46	
1977: 15.95	1980: 18.26	2013: 19.40	1989: 20.25	2003: 21.28	1964: 22.89	1990: 24.49	1996: 27.81	

Eugene precipitation during calendar year 2023

Eugene experienced its 6th driest Jan-Aug on record (since 1939)

Click to Plot/Remove Y	ears of Interest		(number	of missing days in pare	ntheses)			Resort table by year
1938: - (151)	2007: 16.23	2008: 18.20	1951: 20.80	1947: 23.17	1980: 25.30	1979: 27.37	1975: 30.49	1995: 37.65
2013: 9.92	2018: 16.76	1952: 18.82	2016: 20.96	2019: 23.21	1959: 25.61	1950: 27.42	1991: 30.57	1972: 39.00
2001: 11.08	1985: 17.05	1949: 18.94	1943: 21.33	1945: 23.68	2017: 25.61	1998: 27.80	1961: 30.74	1974: 39.43
1944: 12.46	2009: 17.09	2022: 18.97	1994: 21.42	2000: 24.25	1956: 25.67	1948: 27.88	2012: 30.84	1993: 39.48
2015: 12.64	2020: 17.25	2002: 19.14	1967: 21.67	1987: 24.31	1963: 26.06	1999: 28.17	1953: 31.10	1983: 41.06
2021: 14.49	1939: 17.34	2004: 19.62	2011: 21.78	1957: 24.36	2010: 26.12	1968: 28.45	1986: 31.45	1996: 42.51 (4)
2023: 14.61	1942: 17.38	1962: 19.81	2003: 22.19	1964: 24.50	2006: 26.14	1958: 28.69	1984: 31.52	
2005: 14.86	1965: 17.71	1981: 20.19	1940: 22.80	1997: 24.53	1978: 26.29	1976: 29.21	1982: 32.66	
1955: 15.14	1977: 17.91	1946: 20.28	1992: 22.84	1954: 24.65	1988: 26.97	1960: 29.37	1971: 34.61	
1941: 15.53	1973: 18.15	1966: 20.51	2014: 23.00	1970: 24.80	1969: 27.05	1989: 29.37	1990: 35.54	

April 1st 2023 snow water equivalent

Washington's Apr 1 snowpack was about exactly normal at 101%

Oregon had an amazing snowpack year at 154% of normal, fourth best Apr 1 snowpack since 1990!

Total precipitation from high-elevation SNOTEL stations for Oct 1-Mar 31 2023

In Oregon, the excellent snowpack disguised well below normal fall and winter precipitation at high elevations

Great snowpack but not enough water was a communication challenge during spring/summer

Cold February-April 2023

Much colder Feb-April 2023 helped preserve our snowpack

Washington: 31st coldest Feb-Apr on record (since 1895)

Oregon: 13th coldest Feb-Apr on record (since 1895)

Evolution of the Willamette basin SWE

We expected the extra snowpack to stick around for longer into the summer

However, in western Oregon, it melted out about a week earlier than typical

Evolution of the Puget Sound basin SWE

The snowpack in the windward WA Cascades peaked near the end of April and then melted out 2-3 weeks earlier than normal

Record warm May 2023

Washington: Warmest May on record (since 1895)

Oregon: 5th warmest May on record (since 1895)

Average 7-day runoff for Washington

Peak spring streamflows about a few weeks early

Feb-Mar low

Very close to alltime record low runoff during mid-September

Lower runoff than Sept 1994 and lowest since Dec 1936 (!)

	E	xplana	tion - Pe	ercentile	classes	5	
							_
lowest- 10th percentile	5	10-24	25-75	76-90	95	90th percentile -highest	Runoff
Much below	Normal	Below normal	Normal	Above normal	Much a	bove normal	

https://waterwatch.usgs.gov

Washington streamflow categories during WY2023

Oregon streamflow categories during WY2023

Water Year 2023 slightly warmer than average

OR:, +0.8F (1901-2000) WA:, +1.4F

Washington: 20th warmest (since 1895)

Oregon: 42nd warmest (since 1895)

of days with daily maximum temperature above 80°F during 2023

	2023	Ranking in historical record	Record or previous record
Eugene, OR	104	1	98 (1968)
Portland, OR	95	1	90 (2021)
Salem, OR	99	1	98 (2021)
Redmond, OR	111	1	105 (1967)
Pendleton, OR	113	4	128 (1931)
Medford, OR	127	Tied-12	142 (2015)
Seattle, WA	45	Tied-5	51 (2015)
Spokane, WA	94	1	92 (1938)
Olympia, WA	61	Tied-2	65 (1967)
Pullman, WA	92	1	85 (2003)
Boise, ID	125	1	123 (2003)
Lewiston, ID	120	1	112 (2015)

Persistently warm days throughout the 2023 summer in the PacNW

Evaporative Demand

Generated by NOAA/ESRL/Physical Sciences Laboratory

Over the last 6 months, evaporative demand has been greatest in the areas receiving the least precipitation, a true double whammy for surface water availability during the crucial summer season

https://psl.noaa.gov/eddi/

EDDI = Evaporative Demand Drought Indicator

Summary

Despite a relatively dry water year in western Washington and Oregon, a cold Feb-Apr preserved a good-great snowpack into Spring

An historically warm May reduced the benefit of the snowpack during the summer water season

A warm summer and an extended dry spell, combined with early snow meltout and abnormally high evaporative demand, led to abnormally low streamflows throughout the summer

Nearly full drought recovery was realized in much of eastern and southern Oregon

Precipitation did not do as far as it usually does due to record high temperatures and evaporation during summer in western Washington and Oregon